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The behavior of an ideally rigid plastic body is investigated under a
generalized Tresca plasticity condition.

We remark that Hill {1 ] was apparently the first to assume a plasti-
city condition for an ideal anisotropic body: a generalized Mises plasti-
city condition which has been employed repeatedly in applications.

1. We consider an element of the medium in an orthogonal coordinate
system x, y, z. We shall suppose that the flow limits are known for
tension and compression of the element in any direction in the x, y, z
system.

Thus, if the flow limits for tension are denoted by k and those for
compression by s, then in the general case we shall have k = k(1,),
s = s(li), i=1, 2,3, ..., where the I, are direction cosines specify-
ing the direction of the tension or compression relative to the x, y, z
axes. The relation

2412+ 2=1 1.1
holds.

By projecting line segments in the directions of tension or compression
proportional to the values of k and s, we obtain surfaces which we call
the surfaces of anisotropy in tension and compression. For an isotropic
body these surfaces are evidently spheres. In the general case the sur-
faces of anisotropy in tension and compression may be discontinuous, as
for example, in layered materials.

By 1, 2, 3 we denote three orthogonal directions along which the
principal stresses 04, 9,, 95 act. The orientation of the 1, 2, 3 axes
with respect to the x, y, z coordinate system is determined by the table,
of direction cosines.
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We consider the plasticity condition. By virtue of the supposition
that the plasticity conditions are independent of the hydrostatic press-
ure, the plasticity conditions are interpreted
in a space of principal stresses as a certain

cylindrical surface whose generators are parallel 1 2 3
too =0, =0, Thg gurve.of intersection of z I my n
the plasticity condition with the plane o, +

0, + 0, = 0 we call the curve of plasticity. Ihb | m Ny
Figure 1 shows the curve of plasticity determin-

ing the extremal plastic flow properties of the * fa | ms | ns

medium which are possible under non-concave con-
ditions of plasticity, passing through the known
points fixed by the flow limits for tension or compression.

We must note that the condition of non-concavity of the curve shown
in Fig. 1 establishes certain evident limits on the values of the limits
for tension and compression.

Thus, with these assumptions, a certain six-sided prism with bound-
aries parallel to o, = 0, = 0;, completely determined by the flow limits
for tension and compression for each position of the axes 1, 2, 3 may be
interpreted as giving the conditions of plasticity for an ideally plastic
anisotropic body. Changing the orientation of the 1, 2, 3 axes in the x,
y, z system changes the prism specifying the plasticity conditions.

We shall write the plasticity conditions. We denote the flow limits 1in
tension by k1(li)' kz(mi), ka("i)’ and the flow limits in compression by
s, (1), sz(mi?, s3(n;). We write the equation of the plane, parallel to
0, =0, =05 in the form

acy + bss+ca; =0 (a+b+4c=0) (1.3)

The required plasticity conditions are easily obtained from this as

(Fig. 1)
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We determine the equations for the edges of the prism, considered as
plasticity conditions. It is easy to convince oneself that the required
equations may be written in the form

ci:aj:ck—-2k,,, O’i:O'jz—O‘k—2Sk (15)

The condition of complete plasticity for an isotropic body may be
generalized by relations (1.5). In the following we consider the condi-

tiono, =0 =03—2k3

n ) , 1n which we omit the index 3 in k3.

It 1s well-known that
ox = 010;® 4 39m? + ogny?

(:23) (1.6)

Ty = 91l yly 4 59mymy + oznin,

Here and in the following the symbols (xyz), (1 2 3) denote that the
remaining relations are to be obtained by a regular permutation of in-
dices. By making use of (1.6) we obtain

Ox = ¢ — -k - 2kny?, 1y = 2knn,  Gun) L 2.9 (1.7)

[FY

where

k=k{n), 5= +(s.+35,+5), ni=cosb, ny=cosh, ng=cosh

From (1.7) it is easy to obtain the relation

(60— — —:— k)(oy — o — —; k) =1t? (a2 (1.8)

or

(sx —_—c— % k) Tyz— ToxTay = 0 (xw2) (1.9)

Expressions for the plasticity conditions corresponding to the prism
boundaries may be found analogously as generalizations of those given by

levi[2].

We substitute the relations (1.7) into the equation of equilibrium

_(:ja:"_ + a;;“ + a_;z“_l =0 (xy2) (1.10)
We obtain
L TP () e, 50 [ 2 e s,
[;’" n,n;;—f—kn{] sin 0, ()91 4 ;’f)(g——n, sin 0, 0—2"—-
_[%nln2+ .’rnl] sin 0, ﬁ‘;—“_g/' nlndsm(] ‘8‘0“2’*_%;/-:1—_" /smg 29 _
——;)k nnysin Oy 7 —[?‘ nny + Anl]xmﬂ 5, = 0 (1.11)
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in which
p=o, cos?0; 4+ cos?0, 4 cos?; =1 (1.12)

The system of four equations (1.11), (1.12) in the four unknowns p,
0;, is a system of hyperbolic type. Upon writing the equation of the
characteristic surface in the form ¥(x, y, z), we find that the character-
istic determinant in vector form 1is

— (grad V)2 + 2 (grad ‘If-n)z—%(grad ¥-n) (1.13)

(grad V.a) + %(grad‘l"-n) (a-m)=20

where
. a0k
n = n {n;}, a= {—3“5 }
We denote by a the angle between the vectors grad Fig. 2.

¥ and n, by 8 the angle between the vectors grad ¢
and a, and by y the angle between the vectors a and
n. We obtain from (1.3)

(114
— 1+ 2cos?a —bceosacosB 4 beosPacosy =0 <b=—l:—])

At a given point in the body under a given state of stress the direct-
1ons of a and n are fixed and the direction of grad ¥ describes a certain
characteristic cone. Consequently, the angle y is fixed and the angles
a and 8 determine the directions of the generators of the characteristic
cone,

We suppose that the directions of a, m and grad ¥ lie in one plane
(Fig. 2). Then a, = B, + y,. We obtain from (1.4)

ctg 2oy = —:—bsin'r (1.15)

It follows from (1.15) that the directions of grad ¥ in the am plane
are orthogonal. We trace lines in this plane which make an angle equal
to 7/4 with the directions of grad i». These directions, which we call the
axes of the characteristic cone, make angles with the direction of m
equal to a; - 7/4. We find that these are equal to the angles formed by
the generators of any characteristic cone with the axis. It is easy to
show that the angle sought is determined from the expression

cCos v =

V2 < cos? a - sin ap cos a, )

2 cos a'isin a, -+ cos ag)

Evidently for an isotropic material a = 0, a = a, = n/4, cos v = 1/24/2.
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In the general case the characteristic cone will not be a circular one,
The circumstance is a result of the material anisotropy.

We remark that cos a # 0 follows from (1.15).

We return to the determination of the law of plastic flow. We find,
upon employing the Mises relation concerning the extremum of the plastic
work [3 ], as well as the corresponding generalizations of Koiter [4 ]
and Prager [ 5] for the case of angular points on the flow surface, that
from the plasticity conditions (1,8) or (1.9)

2 ok 2. 7 ok 2 ‘ ok :
= =X — — 2 = — L
&= g h (1 “Js, TUZ) ghe |2 5o T’-") 7 aa, T |
2 0k . 11¢
Exy == _)‘1(?8 Tyz + 'tm)— (1‘;’;) (1.16)
Y
"2 ok . 2 .\ 2 ak
— ks ( ERF T + TJz ! ' (Gz I ]i'/’ Ty ‘txy]
where Ay - ' © Ty
ok __ 6k Ony | B8k Ony |, Ok Ong
861.]. ony ()si]. T Tan, 00” Y 0ns a“ij

In a given case the necessity of differentiating the function k with
respect to the stress components 1s apparent.

Further, it is necessary to deduce certain relations. We obtain from

(L.7)
(1.17)
20, — 6y —0 = 2k(3n>—1), Toy® Tt = AR 2 (1 —n)?) (I;’;)
It follows from (1.17) that
(203“ — %y cl):ﬁ_ (3n2 — 1)2 XY 2y S
Tttt =y () (1.18)
and from (1.18)
any (I — ny?) 3'."‘_ _Ony _om (1 —n?) xyz
do, —  t4wm® 7 s, T de, Y R ( 12 3) (1.19)
oy - na {(An;2 —1) Qzl_ o n-;(;zu__— 1) 8111 -0
07y 2l 4 ng?) dt,, 2(1 4 ny?) 7 d~ o

By substitution of expressions (1.19) into relations (1.16) and elimi-
nating the quantities Ao Ay, )\3 we obtain

2/ 7. 2/ I
6. — 6 ~2/3k s,—o6—32zk
1 z
dl 8.’\' + sxy T—_ + SJ‘Z‘—T =
xy xz
6 =2k s —2k
G.. [o] /s =3 o1 ja
x z k
=d, {Sw — + &y -+ gy —‘—Ti"*} = ;
xy yz 1.20)
G, — 06— 2j3k Sy— 0 — ,3k

= da[sxz —x‘—‘,_—‘— + Syz — +Sz]

Xz uz
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where
ok [k ok

R | ok ' 3
=2kt g —gmmt o T o™

ny
It is easy to see that the incompressibility condition

tx -8y + & =0
1s fulfilled.
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(1.21)

The three equations (1.20), (L.21) in the three unknown velocity com-
ponents of the displacements u, v, w belong to a hyperbolic type, of
which the characteristic surfaces are determined according to equation
(1.13). Thus, in the case considered, the system of equations character-
1zing the anisotropy and the system determining the states of stress and

strain colncide.

Although the states of stress and strain corresponding to the plasti-
city conditions at the prism boundaries have been touched upon, this

question must be considered separately.

2. We consider the twisting of a prismatic rod of ideally rigid plastic
anisotropic material. We suppose that the rod anisotropy is such that it

is independent of :z, the axial coordinate. As usual, we set

Sx ::G,U = GZ = ‘txu:O (2'1)
We satisfy relations (1.6), setting 0, =-— 62, 03 = 0, for which the
orientation of the 1, 2, 3 axes in the x, y, z system is determined
according to the table of direction cosines.
TABLE
1 ‘ 2 3
x lfgcos 0 ‘,/2_5 cos 0 —sin 0
y ve sin 9 V2sin 6 —cos 0
) 2
V2 _VE
: = T 0
Any of the plasticity conditions (1.4) leads to the expression
oy = 01(6) or Tiz‘#'ng = kz(ﬂ) (2.2)
By substitution of the expressions for stressr = k(0) cos @, Ty, =

k(6) sin @ into the single equation of equilibrium
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we obtain

<——ksin6+%’écosﬂ)%—}—(kcosﬂ%—%gsin 9)2—2:0 (2.3)

The characteristics of equation (2.3) are determined from

dz dy do

“ksin®F k' cos®  kcos@ A snb o

<\k, .. dk )

prig (2.4)

It follows from (2.4) that the characteristics are the straight lines

kcos@-1k'sin® -
ZEsin® 4 K cos0 ) D (0) (2.9}

along which 0 = const. Further, by making use of the associated law of
flow, we obtain

Ex = ey = g; == 7-\'1’ == O
/ , 00 P , 00
Yoo = 20 (xer — W 2 ) N Ea— F,_\ (2.6)

From the expression 6 = tan"i(ryz/r“) we find

L Tyz M Tx ¢
ot, K ot,, ~ k? (2.7)
Consequently, the law of plastic flow may be written in the form
kl kl
Yxz = 2 (Tzz +5 T2 Yz = 2h(Tyz — F Txz) (2.8)
From (2.8) it follows that
7} 0 k' 0 0 k’
(‘g'g‘ + ‘gf‘) (Tyz _'k“fxz)"'('gli‘ + a?_l;/) (txz + }TTuz) =0 (2.9)
If we put u = cyz, v = ~ cxz (¢ = const), then we find from (2.9) that
(ksin — & cos6) %% —(kcos -+ sin 9)%% + cy (ksin0 — &’ cos 0) +
+cx(kcost 4 A'sinf) =10 (2.10)

It follows from (2,10) that the characteristics of equations (2.4) and
(2.10) in the xy-plane coincide, and that along straight lines 6 = const
the relation

w=_c S (ydx — xdy) + const (2.11)

holds.

Expression (2.11) coincides with the relation of Mandel [6 1, derived
for the warping under torsion of a prismatic rod made from ideally rigid
plastic material.
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3. We consider the case of a state of plane strain. Direct the z-axis
along the axis of an infinite cylinder and assume that none of the com-
ponents depends upon z. In this case

Txz = Tyz == 0, € = Ex; = By, = ¢ (3.1)
If we limit ourselves to consideration of expression (1.9), then
(0x — oy)? + 413y = 4K2(0), or = 3 (92 + oy) + k(8) (3.2)
We make a change of variables:
6y =p-+hkeos20, oy=p—FKkcos20, v, =ksin20 (3.3)

Upon substitution of (3.3) in the equation of equilibrium we obtain
the system

op , 90 . 00 . a0 90

o T c0s 205y — Dhsin M5, + K sin20 5 + Zkoos W50 =0 o
ap , . a0 80 , 30 ) 3 )
ay +k Sm29—a?~+2k00520—0?—k cosZO—@-—ﬁ—stm 20———02 :=0

The characteristics of the system of equations (3.4) have the form

(d_y) _ —k'cosi® —iksinZ0 4 V2L 4k?
1.2

dx k'sin.0 + 2k cos 20 (3'5)

It is easy to see that the characteristics (3.5) are mutually ortho-
gonal. In addition, one may obtain relations which are generalizations
of the well known Hencky integrals [7]:

p+F(6)=const, [F(0)= SV T 4R do (3.6)

One employs relations (3.6) to formulate a generalization of the Hencky
theorem, establishing certain properties of the sliding lines.

We consider the law of plastic flow. We seek the extremum of the work
of the stresses for a twisting deformation for a particular element of
the body with the additional condition

dA = o.dey + oydey + 2teydery — d [(0x — ay)? + 415, 2—4K2 (0)]

The extremum is found from the conditions o4 _ oA — 04 _ 0.
We shall have 9oy ds,, 0Ty

ex=)\[ox—-—cu——4kk'g—:)—]
, 00 7 , 00
ey-——)\[cu—ox—ldtk e J ex,,=4x[cx,,-kk H] (3.7)

1
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It follows from (3.3) that 6 = t.an"1(2r”/onC - ay), from which we ob-
tain )

00 sin:@ 00 sin .0 ] cos: 0

do,. 4k do,, 4k 7 (’)‘rxy_ Lk

Finally, the law of plastic flow for anisotropic media takes the form

Ex = )\(sx— oy + —’;c—— ‘cxy) , gy = l(csy —G — —kl—f—-cxy> (3.8)
Exy = 2h [Q-cxy— -j_— l;c (3x_°u)]

The expressions (3.8), if A 1is eliminated, represent two equations in
the two unknowns u and v, which are the components of the displacement
velocity. It 1s easy to convince oneself that the equations are of hyper-
bolic type and that their characteristics coincide with the character-
istics of the stress equations. Along the characteristics the elongation
is zero, and so the relations of Geiringer hold [8 ],

We note that the form of the plasticity conditions (3.2) is similar
to the Tresca plasticity conditions, but because of anisotropy, the
sliding lines do not coincide with the lines of maximum shear stress. It
should be noted alsc that conditions (1.4) may be realized to some extent
in the xy plane, and so in the general case, it 1is necessary to provide
for the possibility of conjugate solutions.

4. Finally, we consider the case of a state of plane stress. We suppose
that 0, = 0 = 0,7,,=7,,=0.]+1In Table (1.2) the relations ny = 1,
n,=n,= 13 =my = 0 hold. On these assumptions the quantities ky and s,
are constants.

The plasticity conditions are described by a hexagon as in Fig. 3. It
follows from (1.4) that in the general case the plasticity conditions
may be written in the form

A(0)o; +B(0)o, =1 (4.1)
6, 8
Passing over to the Cartesian components we obtain ¢
1
o = p+ 16 (O) — Cy®) pleos’d (€= ) L
. A+ DB
oy =p+I1C1(9)—C;(9) p]sin?b (Cz = —'jl;*> 4.2) .
Ty = — [C; (8) — C, (8) p] sin 6 cos B £ F
For the sides of the hexagon AB, BC, DE, and EF in Fig. 3.

Fig. 3.we shall have k, = «k,, where x is a constant
equal to k3 or s,.
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The plasticity conditions (4.1) may be rewritten as

AB (0, + o) + (4% + B?) oz0y — (A + B)(ox + 0y) —[(A—B) P+ 1 =0

Upon substitution of expressions (4.2) into the equation of equilibrium
we obtain
. on @ . , 09 o8 _
%(1_,_ C, cos? ) _|_%Czsm 26-6—5 + (Dsin20 4 D' cos?8) o — A 3y =0

, ) a0 0
22 (1 — Cysin®) +2Cusin28 22 4 (Dsin20 + D' sin?0) 5o — A 75 =0

Here
, dC dC ) i ’ .
D =C,—Cyp, D = 71—6‘-——1)—&01, A = Decos26 + - D'sin 26 (4.4)

The characteristic equations for the system (4.4) are written in the
form

(d_y> _ D’c0s20 — D (2—Cy)5in20 + V4DE (L — Cy) + D2
dz /s 2(— DCyc0820 + D cos 20 4 1/, D" sin . 0) (4.5)

Along the characteristics the relations

D’ a1 —-C D2
p+ F(o)=const, F(®)= =4 Tt (4.6)

hold.

Let us determine the law of plastic flow. Upon making use of relations
(4.4) as in a plastic potential we find that

gy == M{2A4Bo, + (A? -+ B oy — (A + B)—[(A'B - AB")(5.* + 5,%) +
+ 2 (AA' 4 BB’) syay— (A" -+ B')(6x + oy) — 2(A — B) (A" — B') 15|t}
g, = A {24B3, 4 (A% -}- B 5, — (A + B) — [(A'B + AB’)(0,* 4+ 5,%) +
+ 2(AA" 4+ BBy osoy — (A" + B') (35 -} 0y) — 2 (A — B) (4" — B') t)*] 1,°)
260y = M {—2(A4 — B)?1,y, + [(4'B 4 AB') (6,2 4 ¢,%) + 2(4 4" -+ BB") g\0,, —

- (A' -+ BI) (cx -+ "u) —2 (A - B) (A’ - Bl) T,\-y2]3°

1 2t
Q = — arc tg __.___xy_..___
2 cx—ay

T:x"[j ° Op— Uu

(cx——-cy)z-i-/rrxyz’ o= (ax—oy)‘l-i-é‘rxvz

o
] TXJ/Z

It is easy to convenice oneself that the equations determining the
field of velocity belong to a hyperbolic type and that their character-
istics coincide with the characteristics of (4.5).
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