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The behavior of an ideally rigid plastic body is investigated under a 

generalized Tresca plasticity condition. 

We remark that Hill [l 1 was apparently the first to assume a plasti- 

city condition for an ideal anisotropic body: a generalized Uses plasti- 

city condition which has been employed repeatedly in applications. 

1. We consider an element of the medium in an orthogonal coordinate 
system x, y, z. We shall suppose that the flow limits are known for 

tension and compression of the element in any direction in the x, y, z 

system. 

Thus, if the flow limits for tension are denoted by k and those for 

compression by s, then in the general case we shall have k = k(Zi), 

s = S(Zi), i = 1, 2, 3, . . . . where the 1; are direction cosines specify- 

ing the direction of the tension or compression relative to the x, y, z 

axes. The relation 

12 1 -j- 1,= f 132 = 1 (1.1) 

holds. 

By projecting line segments in the directions of tension or compression 

proportional to the values of k and s, we obtain surfaces which we call 
the surfaces of anisotropy in tension and compression. For an isotropic 

body these surfaces are evidently spheres. In the general case the sur- 

faces of anisotropy in tension and compression may be discontinuous, as 

for example, in layered materials. 

By 1, 2, 3 we denote three orthogonal directions along which the 

principal stresses ul, a2, a3 act. Ihe orientation of the 1, 2, 3 axes 

with respect to the x, y, z coordinate system is determined by the table. 

of direction cosines. 
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We consider the plasticity condition. By virtue of the supposition 

that the plasticity conditions are independent of the hydrostatic press- 

ure, the plasticity conditions are interpreted 

in a space of principal stresses as a certain 

cylindrical surface whose generators are parallel I1 I2 I3 
to u1 = u2 = a3. Ihe curve of intersection of 

the plasticity condition with the plane u1 + 
x 1 11 1 ml ( nl 

u2 + u - 0 we call the curve of plasticity. 7-- 
Figure 1 shows the curve of plasticity determin- 

( 1% ( m 1 n2 

ing the extremal plastic flow properties of the 
2 ( 13 1 m3 1 ~3 

medium which are possible under non-concave con- 

ditions of plasticity, passing through the known 

points fixed by the flow limits for tension or compression. 

We must note that the condition of non-concavity of the curve shown 

in Fig. 1 establishes certain evident limits on the values of the limits 

for tension and compression. 

Thus, with these assumptions, a certain six-sided prism with bound- 

aries parallel to aI = u2 = a?, completely determined by the flow limits 

for tension and compression for each position of the axes 1, 2, 3 may be 

interpreted as giving the conditions of plasticity for an ideally plastic 

anisotropic body. Changing the orientation of the 1, 2, 3 axes in the n, 

y, I system changes the prism specifying the plasticity conditions. 

We shall write the plasticity conditions. We denote the flow limits in 

tension by k,(li), k2(mi), k3(ni), and the flow limits in compression by 

sI(li), s2hi), s,(ni). We write the equation of the plane, parallel to 

O1 = u2 = u7 
in the form 

ao, + b52 + CUQ = 0 (a+b+c=o) (1.3) 

_ 'Ihe required plasticity conditions are easily obtained from this as 

(Fig. 1) 
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We determine the equations for the edges of the prism, considered as 

plasticity conditions. It is easy to convince oneself that the required 

equations may be written in the form 

Gi = ~j = ok - 2kk, Gi = Gj = - Sk - 2Si, (1.5) 

‘Ihe condition of complete plasticity for an isotropic body may be 

generalized by relations (1.5). In the following we consider the condi- 
tion u1 = a2 = a7 - 2k,, in which we omit the index 3 in kj. 

It is well-known that 

Here and in the following the symbols (xyz), (1 2 3) denote that the 
remaining relations are to be obtained by a regular permutation of in- 

dices. l3y making use of (1.6) we obtain 

OX E C - -$ k + 2kn,‘, T,~ = 2kn,n, (SW) (1. 2. 3) 

where 

x- = k(ni), 5 = 5 (0, + 5!, -+ 5*), n, = cos fl,, n3 = COS O,, 

From (1.7) it is easy to obtain the relation 

or 
(or - 0 - $ k) (q, - G - $ k) = ~~~2 (rvz) 

(5X-- o - + k) ‘cyz - T~,T,.~ = 0 (Q4 

(l-7) 

n3 = c.os oy 

(1.8) 

(1.9j 

Expressions for the plasticity conditions corresponding to the prism 

boundaries may be found analogously as generalizations of those given by 

Levi [ 2 1. 

We substitute the relations (1.7) into the equation of equilibrium 

We obtain 

(1.10) 

i ai) dk 1 -- - :: ax i- r G ( -LJ--~I’) 2kn, 1 sin 0, $ - [z nlnz + kn,] sin 0, 2 - 

ak 
[-- n,n3 + h-n, 1 sin 0, ‘2 + 

I?/< [ 1 
- ati , %, 1, :T - nL2\, sin 

_ / 
0, 2 - 

- 
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in which 

P = =, cos20, + cos202 + cos20, = 1 (1.22) 

The system of four equations (l.ll), (1.12) in the four unknowns p, 

e i, is a system of hyperbolic type. Upon writing the equation of the 

characteristic surface in the form '4(x, y, z), we find that the character- 

istic determinant in vector form is 

(gradYe a)+ 

where 

~ , 

+(gradY-n)(a-n) = 0 

Il = II {Q}. 

We denote by a the angle between the vectors grad 

Y andn, by@the angle between the vectors grad $ 
Fig. 2. 

and a, and by y the angle between the vectors a and 
n. We obtain from (1.3) 

(1.14) 

-l+2cos2a -bcosacosp+ bcos2acosr = 0 (b+) 

At a given point in the body under a given state of stress the direct- 

ions of a and n are fixed and the direction of grad '4 describes a certain 
characteristic cone. Consequently, the angle y is fixed and the angles 

a and /? determine the directions of the generators of the characteristic 

cone. 

We suppose that the directions of a, n and grad 'I' lie in one plane 
(Fig. 2). Then a,, = &, + yO. We obtain from (1.4) 

ctg2a, = $bsinr (1.15) 

It follows from (1.15) that the directions of grad Y in the 813 plane 

are orthogonal. We trace lines in this plane which make an angle equal 

to n/4 with the directions of grad $. These directions, which we call the 

axes of the characteristic cone, make angles with the direction of n 
equal to a0 - n/4. We find that these are equal to the angles formed by 
the generators of any characteristic cone with the axis. It is easy to 

show that the angle sought is determined from the expression 

cos v = g ( cos2u +sina~cosa, .: ~osa'~sina,+ cosa,) > 

Evidently for an isotropic material a = 0, a = a0 = n/4, cos v = 1/2dz2. 
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In the general case the characteristic cone will not be a circular one. 

'Ihe circumstance is a result of the material anisotropy. 

We remark that cos a f: 0 follows from (1.15). 

We return to the determination of the law of plastic flow. We find, 

upon employing the Mises relation concerning the extremum of the plastic 

work [3 1, as well as the corresponding generalizations of Koiter [4 I 

and Prager [5 1 for the case of angular points on the flow surface, that 
from the plasticity conditions (1.8) or (1.9) 

In a given case the necessity of differentiating the function k with 
respect to the stress components is apparent. 

Further, it is necessary to deduce certain relations. We obtain from 

(1.7) 
(l.A 7) 

h,---GY-G = 3k(3n,“- ii, -.\ LIZ -j- I TAZ2 -_ 4k2i1,2 (1 -- rzl’) CK> 

It follows from (1.17) that 

(20, - ol,-- a,)' (;+," - 1):: 

Tq/s+ 7X22 nl"(Z-T/n,z) (;itj (1.28) 

and from (1.18) 

i)lll Z, (1 - np) 31:, an1 12, (1 - 12,q __=-_ -- :z --_z.-_ -~ 
i)o, 1 + IL,? ’ a0 u aoz L (1 + flli) (X> (1.19) 

d/l, II? (h,” - 1) nz (:3n,” - 1) aft, __ =: - 
2(1+ril’) ’ 

fit = _ 

%, a-c,, 
-0 Z(l+rL,‘/ ’ a-yz-- 

By substitution of expressions (1.19) into relations (1.16) and elimi- 

nating the quantities A,, A,, A7 we obtain 

i\l 20) 
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where 

di = 2k 

It is easy to see that the incompressibility condition 

is fulfilled. 

(1.21) 

The three equations (1.20), (1.21) in the three unknown velocity com- 

ponents of the displacements u, v, UI belong to a hyperbolic type, of 

which the characteristic surfaces are determined according to equation 

(1.13). Thus, in the case considered, the system of equations character- 

izing the anisotropy and the system determining the states of stress and 

strain coincide. 

Although the states of stress and strain corresponding to the plasti- 

city conditions at the prism boundaries have been touched upon, this 

question must be considered separately. 

2. We consider the twisting of a prismatic 

anisotropic material. We suppose that the rod 

is independent of 2, the axial coordinate. As 

5'x = Gu -: az =: 5,v = 

rod of ideally rigid plastic 

anisotropy is such that it 

usual, we set 

0 (2.1) 

We satisfy relations (1.6), setting a1 = - 02, o7 = 0, for which the 

orientation of the 1, 2, 3 axes in the n, y, z system is determined 

according to the table of direction cosines. 

I 

-- 

Y 
__- 

7, 

TABLE 

1 2 I 3 

v/z 1/2 -z cos 0 -F cos 0 -sin 8 

v/z . 
3-sln e lG 

z sin 0 -cos 0 

q _I/5 .- I 0 
2 

Any of the plasticity conditions (1.4) leads to the expression 

(2.2) 

By substitution of the expressions for stress rZZ = k(8) cos 8, 7yz = 
k(8) sin 8 into the single equation of equilibrium 
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we obtain 

(-ksine + $ cos0)~ + (kcos91.~ -$ sin 0) $ = 0 
,' (2.31 

'lhe characteristics of equation (2.3) are determined from 

dX dY 
-/csinCl+li'cosCl = ~~~-tk'sinQ- ___ Cl 

._i!i (“‘:-- $‘) (2.4) j 

It follows from (2.4) that the characteristics are the straight lines 

along which 8 = const. Further, by making use of the associated law of 
flow, we obtain 

E, = EU = E, -~; r,T1, -_ 0 

From the expression 8 = tan-l(r 
JL) we find 

a0 T/r ao TX* 
lYTx. = _k"' i3Tuz = k2 

Consequently, the law of plastic flow may be written in the form 

(2.7) 

7 x2 

From (2.8) it follows that 

(2.8) 

If we put u = cyz, v = - cnz (c = const), then we find from (2.9) that 

(k sill 0 - k’ cos 0) ‘; -(kcosO+k’sin8)$ + cy(ksin0 - k’cos0) + 

+ cx (k cos 8 + k' sill 0) = 0 (2.10) 

It follows from (2.10) that the characteristics of equations (2.4) and 

(2.10) in the ny-plane coincide, and that along straight lines 8 = const 

the relation 

w = c 
I 
(ydx - xdy) + COIJSt (2.11) 

holds. 

Expression (2.11) coincides with the relation of Mandel [6 1, derived 

for the warping under torsion of a prismatic rod made from ideally rigid 
plastic material. 
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3. We consider the case of a state of plane strain. Direct the z-axis 

along the axis of an infinite cylinder and assume that none of the com- 

ponents depends upon z. In this case 

?x* = Trz = 0, E, = Erz = Eyr = 0 (3.1) 

If we limit ourselves to consideration of expression (1.9), then 

(ox- 0 + 4& = 4k2(8), UZ = $(UX + u,) + k(6) (3.2) 

We make a change of variables: 

c,=p+kcos20, q, = p-kcos20, Txy = ksin20 (3.3) 

Upon substitution of (3.3) in the equation of equilibrium we obtain 

the system 

2 +k'cos2e$ -2ksin2e~+k'sin28~+2kcos20~=0 

g+k sin 28 g .+ 2k cos 28 $ -k’cos20% + 2ksin 203 =o 
(3.4) 

lhe characteristics of the system of equations (3.4) have the form 

- k’cos 20 - ik sin Xl * v/k’2 + 4k2 

k’ si II LB + ;k cos 28 (3.5) 

It is easy to see that the characteristics (3.5) are mutually ortho- 

gonal. In addition, one may obtain relations which are generalizations 

of the well known Hencky integrals [7 1: 

p&F(O) = const, [F(e)= ii/P + 4k2d0 

One employs relations (3.6) to formulate a generalization of 

theorem, establishing certain properties of the sliding lines. 

We consider the law of plastic flow. We seek the extremum of 

(3.6; 

the Hencky 

the work 

of the stresses for a twisting deformation for a particular element of 

the body with the additional condition 

dA = de, -I- v&, + 2~,ydery - dp [ (& - uJ2 + 4r,,L4k2 (e)l 

The extremum is found from the conditions ?!! = r3A dA o 
-=------_~ 

We shall have a% % %cy 
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It follows from (3.3) that 0 = tan-1(2rXy/oX- 0~1, from which we ob- 

tain 

a0 sin;8 a0 sin :O ae ros:o 
q-=--Y 4k -=--ar % s= ;k 

Finally, the law of plastic flow for anisotropic media takes the form 

3, - ay + + Kxll > , Ey = h 
i 

k’ 
oy - 0, - -.qxy 

k > (3.8) 

E (%-d] 

The expressions (3.8), if h is eliminated, represent two equations in 

the two unknowns u and zi, which are the components of the displacement 

velocity. It is easy to convince oneself that the equations are of hyper- 

bolic type and that their characteristics coincide with the character- 

istics of the stress equations. Al ong the characteristics the elonpation 

is zero, and so the relations of Geiringer hold [ 8 1. 

We note that the form of the plasticity conditions (3.2) is similar 

to the Tresca plasticity conditions, but because of anisotropy, the 

sliding lines do not coincide with the lines of maximum shear stress. It 

should be noted also that conditions (1.4) may be realized to some extent 

in the ny plane, and so in the general case, it is necessary to provide 

for the possibility of conjugate solutions. 

4. Finally, we consider the case of a state of plane stress. We suppose 

that o 3 = oz= 0, rxz= TYZ 

n1 = n2 = I, = m3 = 

= 0. I+ 1 ln Table (1.2) the relations nj = 1, 

0 hold. On these assumptions the quantities k, and s3 

are constants. 

The plasticity conditions are described by a hexagon as in Fig. 3. It 

follows from (1.4) that in the general case the plasticity conditions 

may be written in the form 

A(O)o, +B(O)a, = 1 (4.1) 

Passing over to the Cartesian components we obtain 

ax= PS Ic,(f-J)--c,~qplco~2~ (Cl = f) 

uu = p + 1Ci (O)- C2(8)p]sin20 
( 
C, = LL.J!\ 

A 1 (4.2) 
T 2-y = - [C,(e)- C2(0)p]sin 19 cos.0 

For the sides of the hexagon AR, BC, DE, and EF in 
Fig. 3.we shall have k, = Kkl, where K is a constant 
equal to k, or s3. 

Fig. 3. 
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'Ihe plasticity conditions (4.1) may be rewritten as 

AB (uzp + o,,*) + (A2 + B”) o,uy - (A + B) (ax + a,,) -_[( A - B) G,J + 1 = 0, 

Upon substitution of expressions (4.2) into the equation of equilibrium 

we obtain 

g(1 - C,cos~0)+~C,sin20~ +(Dsin28+D'cos20)-$- A g-0 

&I- C2sin20) + T ' C2sin20$f(Dsin28+D'sin20)~- A g-0 

Here 

D=C1--Cc,& D'= dg-pd+> A = Dcos26+ +D'sin28 (4.4) 

'Ihe characteristic equations for the system (4.4) are written in the 

form 

D’ cos 20 - D (2 - Ce) sin 28 + Jf4 D2 (2 - C,) + D’2 
2 (- DC2 cos‘% -+ D cos ;8 + Ii2 D’ sin 33) (4.5) 

Along the characteristics the relations 

p + F (0) = const, F (e) = \ 
D’ j-T/4fJ’ (1 - C,) + D’* 

2 (1 - C,) (4.6) 

hold. 

Let us determine the law of plastic flow. Upon making use of relations 

(4.4) as in a plastic potential we find that 

E, = h {2ABa, + (A2 + B2) au - (A -t_ B) - [(A’h’ -j- AB’) (q.” +- sU2) $- 

+ 2 (AA’ + BB’) 5,+, - (A’ -;~ B’) (ax + qJ -- 2 (A - B) (A’ - B’) ~x,?]t,yO} 

E,, = h {2AB5,, + (A2 -I- B2) 3’s - (A + B) - [(A’B f AB’) (ux2 + c.J~,“) + 
+ 2 (AA’ + BB’) axoy - (A’ + B’) (gx -k uY) - 2 (A - B) (A’ - B’) T,,,~] qy0) 

2~,?, = h{-2(A- B)2~rll j- [(A’B f AB’) (ox2 + au’) + 2 (AA’ -I- BB’) a+~?, -. 

- (A’ + B’) (err + q,) - 2 (A -B) (A’ - B’) T~~~JY=’ 

It is easy to convenice oneself that the equations determining the 

field of velocity belong to a hyperbolic type and that their character- 

istics coincide with the characteristics of (4.5). 
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